
Management and Production Engineering Review

Volume 1 � Number 4 � December 2010 � pp. 55{66

MULTI-AGENT SOFTWARE ARCHITECTURE
FOR AUTONOMOUS ROBOTS: A PRACTICAL APPROACH

Piotr Skrzypczy«ski

Pozna« University of Technology, Institute of Control and I nformation Engineering, Poland

Corresponding author:
Piotr Skrzypczy«ski
Pozna« University of Technology
Institute of Control and Information Engineering
Piotrowo 3A, 60-965 Pozna«, Poland
phone: +48 61 6652198
e-mail: piotr.skrzypczynski@put.poznan.pl

Received: 11 October 2010 Abstract
Accepted: 25 November 2010 This paper analyses the issues of designing software for an autonomous robot, which is per-

ceived as a real-time, multi-stage data processing system. We focus on a functional analysis
of the data-driven world-modelling and motion planning tas ks performed by the robot, and
then we develop a multi-agent software architecture, which guarantees exible use of sen-
sors and world representations. We demonstrate use of this a rchitecture on two practical
examples: an autonomous indoor mobile robot, which can be ap plied for janitorial services
or as an AGV in exible manufacturing, and on a walking robot, which is intended for
reconnaissance and search missions, e.g. in hostile or polluted industrial environments.

Keywords
autonomous robots, software architectures, blackboard sy stems, multi-agent paradigm.

Introduction

In the last decade we witnessed a gradual change
of the directions in robotics research, and an evo-
lution in the application areas of robots. Creation
of new market niches outside the manufacturing
area (e.g. security, cleaning, construction, agricul-
ture, healthcare, entertainment) opened new �elds of
research, focused on decision-level autonomy, reliable
perception, and safe human-robot interaction [1].
Autonomous robots are slowly entering also the more
established area of industrial automation, where they
can address the new requirements for more exibil-
ity and intelligence in industrial robots [2]. A good
example of the application �eld for autonomous mo-
bile robots in industry are the Automated Guided
Vehicles (AGV). By adding more sensing and deci-
sion capabilities to the existing cart robots we can
obtain systems that are released from the usual in-
frastructure (inductive paths, laser beacons, etc.),
what makes them much more exible in adaptation
to the changing production or logistic tasks [3]. Much
more autonomy is required also when it comes to spe-

cial circumstances, that can arise in manufacturing
plants due to machine failures or various accidents.
In many cases such an accident changes the envi-
ronment in a way that makes it inaccessible to the
human beings due to a chemical pollution or a possi-
bility of explosion. In such circumstances robots can
help a much, releasing humans from the most dan-
gerous tasks.

Although a signi�cant level of autonomy is re-
quired for robots interacting with a changing envi-
ronment, this autonomy does not come without a
cost. The autonomous robots are much more compli-
cated with regard to (w.r.t.) their control systems, as
they have to handle much more information gathered
by their sensors and produce the control signals in
real time. The operation of an autonomous robotic
system strongly depends on the available world mod-
el. Autonomous mobile robots on-line update their
internal world-models to reect the scene changes
which are essential to the feasibility of current tasks.

In most cases, single-modality (e.g. only vision
or laser ranging) sensors are insu�cient to guaran-
tee the required quality and robustness of the envi-

55

Management and Production Engineering Review

ronment perception. Therefore a multi-sensor, and
multiple sensing modality system should be used to
provide information on the actual state of the envi-
ronment, enabling recognition of its various features.
Luo and Kay [4] demonstrate that in multi-sensor
systems the advantages are gained by exploiting re-
dundancy, complementarity, and di�erent cost of ob-
taining information from particular sensors. A multi-
sensor system hosted on mobile robots raises a num-
ber of speci�c problems:

� fusion of data from sensors with various abilities
to extract features into a

� coherent world-model,
� integration of di�erent paradigms of world repre-

sentation,
� e�cient use of communication channels.

In the previous work [5] we introduced the Multi-
Agent Blackboard (MAB) software architecture for
perception and world-modelling in autonomous ro-
bots, which addresses the above-mentioned issues.
The aim of this paper is to present the application of
this architecture in two very di�erent mobile robots:
an autonomous wheeled robot, which can be used as
an AGV or patrol/security vehicle, and a six-legged
walking robot, which is intended for search, security
or reconnaissance missions.

Information processing
in an autonomous mobile robot

Regardless of the type and physical characteris-
tics of the autonomous robot, a complex, multi-stage
data processing is undertaken in its control system:

� components of the system act in an independent,
autonomous manner,

� all the components have the common area of op-
eration,

� the robots and the environment inuence each
other,

� di�erent robot tasks are performed on data that
are expressed in diverse formats,

� though they can have a common origin,
� di�erent sensors produce data with di�erent un-

certainty characteristics,
� vast majority of data processed in the system are

the local data, i.e., they describe only
� a part of the environment,
� data have to be acquired and processed continu-

ously while the robot is moving,
� process of the world modelling involves the in-

tegration of very di�erent types of information
(sensor-based anda priori , local and global, un-
certain and certain, etc.).

Two kinds of actions can be distinguished in
the information processing in the robot, namely the
transformation of raw sensory data to the form of en-
vironment models, and the exchange of data between
di�erent world model representations. The order of
execution of the sensory data processing operations
cannot be established in advance, because it depends
on the current data. Each of the operations can be
separately de�ned as a \black box" with some input
and output. These black boxes are loosely coupled
by data they exchange { the output of one box is the
input of another one. This kind of data processing
can be organized as a blackboard system [6] with a
shared database and a set of \experts" cooperating
in a data-driven and opportunistic way.

Multi-agent blackboard architecture

The blackboard system consists of three main
components: the data structure (blackboard) that is
appropriate for the problem solving domain and is
mostly organized as one or more application-speci�c
hierarchies, the set of processing modules (experts)
that transform data from the blackboard, and a con-
trol mechanism. The software modules are kept sep-
arate and independent, and each of them is able to
perform an action. They solve the problem according
to the following cycle [5]:
� triggering the module in view of new information

on the blackboard,
� recognition of information context,
� action execution,
� storing data in the blackboard.

To model a cooperative system with the above-
mentioned properties the agent concept can be
used [7]. In the robotics domain agents are usual-
ly de�ned as autonomous or semi-autonomous hard-
ware or software systems, which perform their tasks
in a complex, dynamic environment [8]. Autono-
my is understood here as the ability to make de-
cisions based on an internal agent world representa-
tion, without being controlled by any central station.
An agent has a perception and communication abili-
ty, and its functionality is expressed through the ac-
tions it takes, including the communication actions.
There is a strong dependency between the black-
board data structure and the repertoire of agents
working around it. The abstraction level and granu-
larity of the data representations on the blackboard
determines the way the software is divided into sep-
arate agents. The higher number of intermediate
representations, the more specialized data process-
ing agents [5]. In a robotic system both processing
modules and information sources (sensors) that are

56 Volume 1 � Number 4 � December 2010

Management and Production Engineering Review

placed around the blackboard are good candidates
to be modelled as agents. One important agent sepa-
ration rule is that a` functionally independent sensor
or actuator, having a communication interface (e.g.
RS232C, USB, Ethernet) should be represented as
an agent. The logical architecture of agents is based
on the following assumptions:
� each module has precisely de�ned task, which is

performed by itself (no calls to other agents);
� a module needs no knowledge about other mod-

ules;
� the blackboard is an environment for each expert

module { it is the source and destination of the
module data;

� only the agents being logical representations of
sensors or actuators (device agents) can read or
write data out of the blackboard.
Blackboard agents detect events in the system by

observing the changes of data on the blackboard [6].
The information needed to arrange control is imple-
mented by means of specialized ags [9]. The black-
board agents cannot address directly each-other or
communicate with other robots, if such robots are
available in the system.

This MAB architecture, described for the �rst
time in [5], introduces such advantages as parallel
data access, and concurrent execution of tasks. It is
easy to introduce changes to the blackboard system
as putting an agent in and deleting it from the sys-
tem is very simple (e.g., in case of sensor set mod-
i�cation). Finally, the system organization does not
depend on agent implementation.

Implementation tools

The main part of a blackboard architecture
implementation is the proper management of
a concurrent-access data repository, which is viewed
as the blackboard. Such a data structure can be im-
plemented in many ways. The choice of particular
implementation tools, which may di�er in e�ciency,
exibility, clarity of the design, programming tools,
etc., depends on the design assumptions.

Many architectures for cooperation among soft-
ware agents are known from the literature [10]. Typ-
ically, these architectures are designed to facilitate
the cooperation between agents of di�erent kind and
origin, including legacy software systems [11]. They
often use very general agent communication mecha-
nisms. However, the generality of the communication
in the software agent architectures is achieved at the
cost of a signi�cant overhead (such as the ontology
and language speci�cation), which is not necessary
in the robot, which has been designed from the be-

ginning as a single machine [12]. Because of that, our
assumptions as to the implementation of the black-
board and communication between the agents are the
following:
� no particular requirements as to the speed of

data transmission between the blackboard and
the agents: it is assumed that the fastest control
processes, related to the low-level control loops of
particular actuators (e.g. PID controllers) are im-
plemented in hardware of the components;

� implementation of the agents should be possible
as both separate processes or threads in a single
process;

� no third-party software should be involved, as we
would like to have an open source system;

� Unix/Linux as the operating system;
� C/C++ as the implementation language.
With the above assumptions we have considered
three approaches to the implementation of the black-
board system:

Using the standard IPC { the standard Unix
Inter-Process Communication (IPC) mechanism can
be used to access a shared memory block from many
processes and/or threads. Its advantage is the small-
est overhead and quick data access. However, its
proper implementation is complicated. The data ac-
cess mechanism has to be entirely replicated in each
agent, customized for its speci�c data types. Criti-
cal errors may occur if a wrong part of the shared
memory is being written or read.

Using a database engine { if the blackboard
data are stored in a transactional database they can
be accessed easily, each agent has to implement on-
ly a procedure that generates proper SQL queries.
Moreover, the synchronization of reading and writ-
ing data is implemented by the database engine it-
self, so the agents do not need to worry about this
issue. Although simple in implementation this con-
cept will result in a rather high-overhead and low-
performance system, because of the SQL interpreta-
tion stage required for each blackboard access. More-
over, the database engine enforces only formal cor-
rectness of the SQL queries { it does not have any
knowledge about the underlying \control logic" of
the system, and can accept queries that will lead to
an ambiguous state of the whole blackboard.

A client-server version { a client-server archi-
tecture implements the blackboard in a single server
process, which enforces the logical correctness of any
\read" or \write" operation, and synchronizes these
operations. This version provides greatest exibility
in agent implementation, because the agents (clients)
communicate to the server by using common network
protocols, such like the TCP/IP.

Volume 1 � Number 4 � December 2010 57

Management and Production Engineering Review

Finally, the agent-based blackboard system is im-
plemented using the last approach described { in
a client-server architecture. The low-level communi-
cation is based on the RCF (Remote Call Frame-
work), which is an open source library implement-
ing remote calling of methods without a need for
using the IDL language. Each agent is based on
a C++ \stub code" that provided the generic agent-
blackboard communication mechanism.

Case study of an autonomous
wheeled robot

Tasks and processing modules

The wheeled mobile robot is based on a Labmate
di�erential-drive platform, extended by adding an
on-board PC and exteroceptive sensors: a Sick LMS
200 laser scanner, and a ring of sonars (Fig. 1A, note
that the on-board camera is not used in the described
system). The robot works in an environment that is
considered to be quasi-static (some objects can ap-
pear or disappera), and in principle two-dimensional,
i.e. we assume that the information about the 2D
shapes of objects are su�cient for the performed
tasks. Essentially, the task is de�ned as moving be-
tween given locations in a partially unknown, indoor
environment.

From the practical point of view, this task can
be mail delivery in an o�ce, delivery of goods in
a logistic system of a warehouse/factory, or jani-
torial service in a public place such as a museum.
The autonomous Labmate robot can be integrat-
ed within a more extended multi-robot system, em-
ploying also stationary monitoring subsystems sen-

sors, such like the overhead cameras that help the
mobile robots to obtain information on their po-
sition w.r.t. the global coordinates [13]. An exter-
nal infrastructure, which provides pose estimates to
the robots may be a particularly interesting solution
for spatially limited environments such as warehous-
es or factories { stationary external cameras have
been already used successfully to navigate experi-
mental AGVs [14]. The global path (route) planning
and task scheduling procedures are not integrated
within the robot. Because the task of the prototype
system is the multi-sensor world modelling, it has
been decided to centralize the strategic-level plan-
ning, and to integrate it within the user interface
agent [13, 15].

Performing its task the robot observes the en-
vironment by means of available sensors and builds
a model of it. Many particular environment repre-
sentations have been proposed in the literature. The
grid-based maps represent space as an array of equal
cells. They can easily be updated with range sensors
readings, tolerating data uncertainty and ambiguity,
but require a large amount of memory to cover bigger
areas with a dense grid. Feature-based maps contain
concise and explicit representations of the geometric
entities, but are less popular because of di�culties
with the direct interpretation of raw sensory data.
Whenever the robot posexR = [xR yR � R]T (posi-
tion in the global Cartesian coordinates and orien-
tation) is unknown, the map has to be constructed
while computing a pose estimate. One of the most
used methods to solve this Simultaneous Localiza-
tion and Mapping (SLAM) problem is the Extend-
ed Kalman Filter (EKF), used with feature-based
maps [16].

Fig. 1. Labmate mobile robot (A) and a view from the overhead c amera (B).

58 Volume 1 � Number 4 � December 2010

Management and Production Engineering Review

We assume that when an obstacle is encountered
on the pre-planned path, the robot is able to de-
tect it and to make a necessary detour. It is per-
formed by means of a simple reexive navigation.
To avoid collisions with obstacles, human co-workers
and other vehicles on the shop-oor an up-to-date
representation of the local environment is necessary.
This representation should be built quickly, should
exploit all sensory information available to the ro-
bot, and should prevent the use of not �ltered, raw
sensory data, which often are extremely noisy. An
occupancy grid is a reasonable choice for the local
world representation at that level of operation. The
grid map directly supports obstacle avoidance, and
can be used as a unifying ground for fusion of dif-
ferent range sensor data. For grid-based maps the
updating procedure exploiting fuzzy sets and mem-
bership functions is implemented [17].

The robot needs to maintain its pose estimate
xR with a certain accuracy. A covariance matrix is
representing the uncertainty [16]. The SLAM task
is performed by matching the local and global envi-
ronment models. Thus, local environment represen-
tation is needed to be matched e�ectively with the
global environment model, which is having the form
of a feature-based map. The local feature-based map,
which is composed of line segments corresponding to
main geometric structures in the environment (e.g.
walls), is such a representation. The robot can be
supplied a priori with a CAD-like map of the envi-
ronment, which is then used for self-localization [13],
but the robot can also built a map from scratch
while performing localization, assuming that the ini-
tial pose of this robot is known. In certain circum-
stances, the robot has to localize itself without any
a priori pose estimate. This global localization (re-
localization) can be accomplished by resorting to the
external cameras, which are strategically deployed in
the environment (Fig. 1B).

The robot can integrate all the collected data in-
to one global model of the environment. This mod-
el is obtained by matching and fusing the geomet-
ric primitives from local feature-based maps. During
this process the models built by other robots may
be accounted for as well. By using the map conver-
sion, the evidence for various environment features
captured on a local grid can be transformed into the
global feature-based map. The converted grid maps
correctly identify much broader set of environment

features than the maps obtained as the result of di-
rect line-based interpretation of the laser read-outs.
This is not only due to the multi-sensory data fu-
sion, but also due to the geometrical interpretation
taking place at the much later stage than in the case
of the vector map. Thus, much more evidence can be
accumulated [17].

Blackboard system structure

The blackboard usually contains universally ac-
cessible data and in our system it contains di�erent
descriptions of the robot environment. Agents are
related to physical devices { sensors and actuators
(ADxxx) or to processing tasks { experts (AExxx).
The device agents execute their actions concurrent-
ly preserving time constraints of respective sensors
and actuators. The LMS 200 scanner, the sonars, the
Labmate controller (providing the odometry), and
the wireless network interface are encapsulated by
the device agentsADScan , ADSonar , ADCtrl ,
and ADComm , respectively. The data processing
tasks are performed by software experts.

� AEFuzzGrid is a software "expert" that imple-
ments the fuzzy-sets-based mapping method de-
scribed in [17]. It builds the local grid map upon
the laser and sonar range measurements obtained
from the blackboard.

� AEScnMatch is the agent that implements the
scan matching procedure.

� AEFeatExt extracts line segments using the cur-
rent raw scan points and the grid map representing
the accumulated past data.

� AESlamAlg is the SLAM agent that implements
the EKF-SLAM as described in [16]. This agent
reads the newly extracted features from the black-
board and uses them as observations in the EKF-
SLAM procedure. It also reads from the black-
board the current robot pose stored there by the
AEScnMatch agent or obtained from the odom-
etry.

� AEPilot is the agent responsible for obstacle
avoidance on the robot path and generation of the
motion commands. It implements the behavioral
paradigm, providing the perception-action cycle
through the grid map treated as a virtual sen-
sor [17].

Figure 2 depicts the blackboard structure and the
collection of agents on the Labmate robot.

Volume 1 � Number 4 � December 2010 59

Management and Production Engineering Review

Fig. 2. Blackboard architecture of the mobile robot.

Experimental results

To illustrate the ability of the Labmate robot
with the MAB-based software to perform the map-
ping and self-localization tasks, an example map
of a corridor in the Electrical Engineering Facul-
ty building of the Poznan University of Technolo-
gy (PUT) is shown (Fig. 3). The corridor is about
150 metres long and was mapped from scratch by
the robot using its LMS 200 scanner. Once the map
is available it can be used for path planning in deliv-
ery tasks.

The EKF-SLAM algorithm can integrate data de-
scribing the features from any external source, pro-
viding that these data are statistically independent
from the already used data, and are expressed w.r.t.
the local robot coordinates. For example, two robots
(having the same software architecture) can share
the mapping results if they \see" each other, what
enables transformation between their coordinate sys-
tems. Alternatively, two robots can share their maps
if they are observed by an overhead camera moni-

toring agent at the same time. This is a practical
solution for transportation systems where the robots
have some de�ned places (e.g. docking stations, load-
ing ramps) that are monitored by cameras for precise
positioning. After the transformation of coordinates
the geometric features obtained from another robot
are treated by the SLAM algorithm in the same way
as the local geometric features yielded by the on-
board sensors. The uncertainty of these converted
features includes any uncertainty caused by the (in-
evitably uncertain) transformation between the coor-
dinate systems of the two robots [15]. Hence, the use
of geometric features produced by another robot is
transparent to the SLAM algorithm implementation
{ there is no necessity for the AESlamAlg agent
to know, where the features come from. Due to this
fact, the implementation of the AESlamAlg agent
remains unchanged, regardless of the integration of
the particular robot in a multi-robot system. This
illustrates exibility of the proposed MAB-based im-
plementation of the navigation software (Fig. 4).

Fig. 3. An example map built by the Labmate robot.

60 Volume 1 � Number 4 � December 2010

Management and Production Engineering Review

Fig. 4. Maps built by two Labmate robots (A,B) and a combined m ap (C).

Case study of an autonomous
walking robot

Tasks and processing modules

In the recent years, walking robots have be-
come popular in security, search, and patrol mis-
sions. Their main advantage is the ability to access
unstructured areas, including rough terrain and dis-
aster sites. They �t also well to structured environ-
ments designed for humans, since they are able to
climb curbs, thresholds and stairs [18].

Missions of walking robots in distant and dan-
gerous areas require use of the teleoperation mode.
However, the capabilities of a human operator to
sense the terrain and to control the robot are lim-
ited [19]. Thus, a walking robot should have enough
autonomy to take an advantage of its high locomo-
tion capabilities in spite of a limited feedback from
the remote operator. It is not possible for a remote
operator to control a walking robot by de�ning the
movement of each leg. The robot should have a goal
which can be de�ned by the operator, but gait gener-
ation and coordination of the legs have to be solved
on-board. When the robot is walking on a rough,
demanding terrain the task becomes much harder,
and the control system of the robot should provide

more autonomous decision capabilities. However, to
exhibit even a basic level of autonomy, a walking ro-
bot requires a model of the surrounding environment.
Acquisition of such a model with a walking robot is
more challenging than the same task on a wheeled ro-
bot, because the 2D planar motion assumption used
in mapping algorithms does not hold for a walking
robot. Once the model is available, the main tasks
of the control system are: foothold selection, gener-
ation of the feet trajectories, and path planning for
the robot trunk. The above mentioned issues make
the software architecture of an autonomous walking
robot extremely complicated.

This section provides a brief overview of the
MAB-concept-based software architecture of the six-
legged Messor robot, which was built at the Poz-
nan University of Technology. This robot is equipped
with a 2D laser scanner Hokuyo URG-04LX, which
works as a terrain sensor: it is tilted down, so the
laser beam plane sweeps the ground ahead of the ro-
bot, enabling it to sense the terrain pro�le. Another
external sensor of the robot is a monocular vision
system (a camera), which serves mainly the purpos-
es of SLAM and self-localization based on the visual
odometry concept. The robot has also a number of
internal sensors: force sensors in the feet, and an Iner-

Volume 1 � Number 4 � December 2010 61

Management and Production Engineering Review

tial Measurement Unit (IMU), that provides the ro-
bot with an instantaneous estimate of its pose in the
six degrees of freedom:xR = [xR yR zR � R � R R]T

(position in 3D and the roll, pitch, and yaw angles).
As the robot is intended for patrol, reconnaissance
and search missions in potentially dangerous indus-
trial environments it is equipped with a node of gas
detection sensors, which is able to detect some organ-
ic gas substances, and indicate a general direction to
the source of such a substance.

Fig. 5. Messor, the walking robot (A) and its sensors (B).

The software of the robot performs the follow-
ing operations related to sensory data processing and
motion planning:
� implementation of the vision-based EKF-SLAM

algorithm,
� pose estimation based on the visual odometry,
� updating the local terrain map from the laser scan-

ner data,
� building the global terrain map using the local

map and the pose estimate,
� computation of the robot trunk path on the basis

of the global terrain map,
� proper footholds selection on the basis of the local

terrain map and the pose estimate,
� computation of the motion parameters for climb-

ing of larger obstacles (e.g. stairs),

� detection of chemical pollution sources,
� generation of the motion controller commands (i.e.

using the robot platform API).

Blackboard structure

The blackboard accommodates data that repre-
sent the position and orientation of the walking ro-
bot, describe the environment and de�ne the motion
control parameters in di�erent sub-tasks. Auxiliary
data (ags and status variables) are related to the
information needed to arrange control for the black-
board system [9]. Figure 6 depicts the blackboard
structure and the collection of agents on the Messor
robot. Hardware components of the walking robot
are represented by device agents (ADxxx).
� ADScan { agent of the laser scanner URG-04LX.

Processes raw distance measurements, compen-
sates the systematic error, and removes the so-
called mixed measurements [20].

� ADCam { agent of the monocular vision system.
Corrects distortions in images that are caused by
the wide-angle lenses and writes images to the
blackboard.

� ADEnvSens { agent of the gas sensors. It detects
the given substance and determines the general di-
rection from which the substance ows toward the
robot.

� ADCtrl { robot controller agent, which writes to
the blackboard the internal sensors data (IMU,
force sensors in the legs), and computes the pose
estimate from the legged odometry. It send the
motion commands provided by the AEPilot to
the robot motion controller.

� ADComm { wireless communication agent. Man-
ages the physical communication channel and the
input/output queues of messages.
Sensory information processing and motion plan-

ning is accomplished by a set of agents{experts
(AExxx).
� AESlamAlg { SLAM agent. It implements the

monocular vision-based EKF-SLAM algorithm
[21]. This agent reads the current robot pose
and images from the blackboard, and updates the
SLAM state vector (global map of visual features),
as well as the robot pose.

� AEVisOdo { visual odometry agent. Its role is
to estimate the camera ego-motion, and thus the
motion of the whole robot analyzing the optical
ow from the camera. The input data are images.
This agent stores the robot pose estimate on the
blackboard.

� AEPosUpd { self-localization agent, which up-
dates the current robot pose upon the local esti-
mates currently available on the blackboard: from

62 Volume 1 � Number 4 � December 2010

Management and Production Engineering Review

the visual odometry, from the IMU, and from the
legged odometry, performing data fusion.

� AEGridUpd { agent that updates the local grid
map of the terrain. Implements the elevation map
updating scheme described in [20].

� AEMapUpd { agent that updates the global grid
map of the terrain upon the current local map and
the current robot pose.

� AEPathPlan { agent that plans the global path
for the robot trunk { from the current robot pose
to the goal pose (stored on the blackboard).

� AEFootPlan { foothold planning agent. Imple-
ments the foothold planning method described
in [22]. Reads the local grid map, current pose,
and the path from the blackboard. The resulting
footholds are in turn stored on the blackboard.

� AELeakLoc { agent that localizes the
gas/leakage source. Requires data stored by the

ADEnvSens agent, and the current robot pose.
Computes new goal for the robot and stores it on
the blackboard.

� AEClimb { agent that controls the robot motion
during climbing obstacles, such like stairs. Imple-
ments the algorithm presented in [23].

� AEPilot { agent that generates robot motion
commands upon the available pose and footholds.
It has a library of gaits and implements the co-
ordination of legs. The commands are stored on
the blackboard and used byADCtrl .

� AETeleOp { teleoperation and monitoring agent.
Its task is to monitor the whole data and to exe-
cute the operator commands, by writing the prop-
er data to the blackboard (i.e. goal pose, path, or
direct motion commands { depending on the tele-
operation mode).

Fig. 6. Blackboard software architecture of the Messor robo t.

Volume 1 � Number 4 � December 2010 63

Management and Production Engineering Review

Experimental results

Some outdoor experiments were performed with
the Messor robot (Fig. 7A), showing the ability of the
map-building and motion-control software to acquire
a map of the terrain with vegetation, and to generate
proper footholds in this uneasy environment. The ro-
bot was able to create an elevation map, which iden-
ti�es the main structures encountered by the robot,
like the root pointed out by the arrows (Fig. 7B).

The robot was used also in the teleoperation
mode. An example of inspection-type mission is giv-

en in Fig. 8. The task was to �nd some \suspicious"
objects (e.g. explosives) under a car or inside a car
located in a typical parking lot. The exibility of the
software, where theAETeleOp agent can override
the automatically generated motion commands by
the commands issued by the remote operator (using
a joypad) enabled the robot to change its posture,
where it was demanded by the operator (Fig. 8A,B),
and to continue normal operation afterwards. The
on-board camera images stored on the blackboard
were sent to the operator (Fig. 8C,D) in order to
identify the object.

Fig. 7. Outdoor mapping experiment.

Fig. 8. Teleoperation mode { searching for a suspicious object.

64 Volume 1 � Number 4 � December 2010

Management and Production Engineering Review

Conclusions

This paper is a case study of practical implemen-
tations of the multi-agent blackboard architecture
for autonomous mobile robots. This architecture is
aimed at the data-driven sensor information process-
ing resulting in high-level, abstract world models.

We use a multi-part environment model, but we
do not introduce rigid hierarchy into the maps. All
parts of the world-model have the equal rights to ac-
cess the information from the sensors, however the
sensory data are processed and stored in the form
of maps that are most appropriate for the particular
sensing modality, and the task at hand (i.e. SLAM,
path planning, foothold selection). The multi-agent
architecture of the blackboard experts guarantees
exible use of sensors and world representations.
This is due to the competition among sensor agents
to provide the required information (e.g., the pose of
the robot) to the navigation modules.

The MAB architecture in various implementa-
tions was used in several autonomous robots built at
the Institute of Control and Information Engineer-
ing of PUT since 2001. The successful application
of MAB to the two very di�erent robots: an indoor
wheeled platform, and a walking robot for rugged
terrain illustrates its exibility and the solid design
methodology, which starts with an analysis of the
robot tasks and data structures, de�nes agent sepa-
ration criteria, and provides a set of simple but e�ec-
tive implementation tools, based on the Unix/Linux
environment.

The research concerning the Messor walking robot
was supported by the Ministry of Science and Higher
Education grant no. N514 294635, which is grateful-
ly acknowledged. The author extend his thanks to the
co-laborators and students, which participated in this
project and contributed to the implementation and
experiments.

References

[1] Garcia E., Jimenez M., Gonzalez De Santos P.,
Armada M., The Evolution of Robotics Research:
From industrial robotics to �eld and service robot-
ics, IEEE Robotics & Automation Magazine , 14 (1),
90{103, 2007.

[2] Takayama L., Ju W., Nass C., Beyond dirty, dan-
gerous, and dull: what everyday people think ro-
bots should do, Proc. of Human-Robot Interaction
(HRI) , Amsterdam, 2009, pp. 25{32.

[3] Kelly A., Nagy B., Stager D., Unnikrishnan R., An
infrastructure-free automated guided vehicle based

on computer vision, IEEE Robotics & Automation
Magazine, 14 (3), 25{34, 2007.

[4] Luo R.C., Kay M.G., Multisensor integration and
fusion in intelligent systems, IEEE Trans. on Sys-
tems, Man, and Cybernetics, 19 (5), 61{70, 1989.

[5] Brzykcy G., Martinek J., Meissner A., Skrzypczy«s-
ki P., Multi-agent blackboard architecture for a mo-
bile robot, in: Proc. IEEE/RSJ Conf. on Intelligent
Robots and Systems, Maui 2001, pp. 2369{2374.

[6] Engelmore R., Morgan T., (eds.), Blackboard sys-
tems, Addison-Wesley 1988.

[7] Schwartz D., Cooperating heterogenous systems,
Boston, Kluwer 1995.

[8] M•uller J., The design of intelligent agents: a layered
approach, LNAI, Vol. 1177, Berlin, Springer 1996.

[9] Brzykcy G., Martinek J., Meissner A., Skrzypczy«s-
ki P., Control aspects of the blackboard agent archi-
tecture for a mobile robot, Control and Cybernetics,
32 (4), 851{866, 2003.

[10] Brzykcy G., On some agent system development en-
vironments (in Polish), Pro Dialog , 15, 1{18, 2003.

[11] Utz H., Sablatn•og S., Enderle S., Kraetzschmar
G., Miro{Middleware for mobile robot applications,
IEEE Trans. on Robotics and Automation , 18 (4),
493{497, 2002.

[12] Kasi«ski A., Skrzypczy«ski P., Communication
mechanism in a distributed system of mobile robots,
in: Distributed Autonomous Robotic Systems 5 (H.
Asama et al., eds.), Tokyo, Springer 2002, pp. 51{
60.

[13] Skrzypczy«ski P., A team of mobile robots and mon-
itoring sensors { from concept to experiment, Ad-
vanced Robotics, 18 (6), 583{610, 2004.

[14] Kruse E., Gutsche R., Wahl F., Intelligent mo-
bile robot guidance in time varying environments
by using a global monitoring system, Proc. IFAC
Symp. on Intell. Autonomous Vehicles, Madrid,
1998, pp. 509{514.

[15] Skrzypczy«ski P., Perception uncertainty manage-
ment in a mobile robot navigation system, Pozna«,
Wyd. Politechniki Pozna«skiej 2007 { in Polish.

[16] Skrzypczy«ski P., Simultaneous localization and
mapping: a feature-based probabilistic approach,
Int. Journal of Applied Mathematics and Computer
Science, 19 (4), 575{588, 2009.

[17] Skrzypczy«ski P., Uncertain spatial knowledge
management in a mobile robot architecture, Proc.
IEEE Conf. on Multisensor Fusion and Integration
for Intelligent Systems, Heidelberg, 2006, pp. 420{
425.

Volume 1 � Number 4 � December 2010 65

Management and Production Engineering Review

[18] Rusu R., Sundaresan A., Morisset B., Hauser K.,
Agrawal M., Latombe J.-C., Beetz M., Leaving at-
land: e�cient real-time three-dimensional percep-
tion and motion planning, Journal of Field Robotics ,
26 (10), 841{862 2009.

[19] Estremera J., Garcia E., Gonzalez de Santos P.,
A multi-modal and collaborative human-machine
interface for a walking robot, Journal of Intelligent
and Robotic Systems, 35, 397{425, 2002.

[20] Šab¦cki P., Rosi«ski D., Skrzypczy«ski P., Terrain
perception and mapping in a walking robot with
a compact 2D laser scanner, in: Emerging Trends
in Mobile Robotics (H. Fujimoto et al., eds.), Singa-
pore, World Scienti�c 2010, pp. 981{988.

[21] Schmidt A., Kasi«ski A., The visual SLAM sys-
tem for a hexapod robot, in: Computer Vision and
Graphics (L. Bolc et al., eds.), LNCS Vol. 6375,
Berlin, Springer 2010, pp. 260{267.

[22] Belter D., Šab¦cki P., Skrzypczy«ski P., Map-based
adaptive foothold planning for unstructured terrain
walking, Proc. IEEE Int. Conf. on Robotics and Au-
tomation , Anchorage, 2010, pp. 5256{5261.

[23] Walas K., Fully parametrized stair climbing
strategy for a six-legged waling robot, in: Emerg-
ing Trends in Mobile Robotics (H. Fujimoto et al.,
eds.), Singapore, World Scienti�c 2010, pp. 777{784.

66 Volume 1 � Number 4 � December 2010

